Alfa-cut based linear programming methodology for constrained matrix games with payoffs of trapezoidal fuzzy numbers
نویسندگان
چکیده
The purpose of this paper is to develop an effective methodology for solving constrained matrix games with payoffs of trapezoidal fuzzy numbers (TrFNs), which are a type of two-person non-cooperative games with payoffs expressed by TrFNs and players’ strategies being constrained. In this methodology, it is proven that any Alfa-constrained matrix game has an interval-type value and hereby any constrained matrix game with payoffs of TrFNs has a TrFN-type value. The auxiliary linear programming models are derived to compute the interval-type value of any Alfa-constrained matrix game and players’ optimal strategies. Thereby the TrFN-type value of any constrained matrix game with payoffs of TrFNs can be directly obtained through solving the derived four linear programming models with data taken from only 1-cut and 0-cut of TrFN-type payoffs. Validity and applicability of the models and method proposed in this paper are demonstrated with a numerical example of the market share game problem.
منابع مشابه
An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملA BI-OBJECTIVE PROGRAMMING APPROACH TO SOLVE MATRIX GAMES WITH PAYOFFS OF ATANASSOV’S TRIANGULAR INTUITIONISTIC FUZZY NUMBERS
The intuitionistic fuzzy set has been applied to game theory very rarely since it was introduced by Atanassov in 1983. The aim of this paper is to develop an effective methodology for solving matrix games with payoffs of Atanassov’s triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concepts and ranking order relations of Atanassov’s TIFNs are defined. A pair of bi-object...
متن کاملIntuitionistic Fuzzy Programming Models for Matrix Games with Payoffs of Trapezoidal Intuitionistic Fuzzy Numbers
The aim of this paper is to develop a methodology for solving matrix games with payoffs of trapezoidal intuitionistic fuzzy numbers (TrIFNs). In this methodology, the concepts of TrIFNs and solutions for matrix games with payoffs of TrIFNs are defined. Two new auxiliary intuitionistic fuzzy nonlinear programming models are hereby constructed to solve matrix games with payoffs of TrIFNs. Using a...
متن کاملA fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers
The aim of this paper is to develop an effective method for solving matrix games with payoffs of triangular fuzzy numbers (TFNs) which are arbitrary. In this method, it always assures that players’ gain-floor and loss-ceiling have a common TFN-type fuzzy value and hereby any matrix game with payoffs of TFNs has a TFN-type fuzzy value. Based on duality theorem of linear programming (LP) and the ...
متن کاملSolving matrix games with hesitant fuzzy pay-offs
The objective of this paper is to develop matrix games with pay-offs of triangular hesitant fuzzy elements (THFEs). To solve such games, a new methodology has been derived based on the notion of weighted average operator and score function of THFEs. Firstly, we formulate two non-linear programming problems with THFEs. Then applying the score function of THFEs, we transform these two problems in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FO & DM
دوره 12 شماره
صفحات -
تاریخ انتشار 2013